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Poincaré cycle of a multibox Ehrenfest urn model with directed transport
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We propose a generalized Ehrenfest urn model of many urns arranged periodically along a circle. The
evolution of the urn model system is governed by a directed stochastic operation. Method for solving anN-ball,
M-urn problem of this model is presented. The evolution of the system is studied in detail. We find that the
average number of balls in a certain urn oscillates several times before it reaches a stationary value. This
behavior seems to be a peculiar feature of this directed urn model. We also calculate the Poincare´ cycle, i.e.,
the average time interval required for the system to return to its initial configuration. The result indicates that
the fundamental assumption of statistical mechanics holds in this system.

DOI: 10.1103/PhysRevE.67.031101 PACS number~s!: 05.20.2y, 02.50.Ey, 02.50.2r, 64.60.Cn
a
er
he
ro
o

ill

ny
l
is

e

a
r

rg
ns
la
th
d
e
s,

pi
m
m

ta
o

re

ly
d
pl
ar

s to
eal
n
not
ore,
ghts
and
ry

ed
n
e
a
we

p
s
en

our
hite
r a
on-
I. INTRODUCTION

Physical laws governing the microscopic processes
mostly reversible in time. In macroscopic world, howev
people often experience time-irreversible phenomena in t
daily life. To understand why the reversible microscopic p
cesses lead to irreversible macroscopic manifestations
refers to thePoincaré theorem, which states that a system
having a finite energy and confined to a finite volume w
after a sufficient long time—the so-calledPoincaré cycle,
return to an arbitrarily small neighborhood of almost a
given initial state@1#. The key point is to note that the typica
value of a Poincare´ cycle for even a moderate-sized system
far beyond the meaningful time scale one can measur
experience, thus the irreversiblity is realized.

Usually to describe a macroscopic system, one has
know only a few parameters, such as volume, pressure,
temperature. However, to describe the same system in te
of its microscopic constituents, one has to deal with a la
number of parameters, such as the momenta and positio
a huge amount of particles, which are impossible to calcu
in practice. Based on this reason together with the fact
the macroscopic laws are insensitive to the microscopic
tails ~of system history!, it is natural for people to adopt th
probability ~ensemble! description in statistical mechanic
which deals with the equilibrium state~a macroscopic state
that has stationary value of state parameters! of a macro-
scopic system. In this kind of description the macrosco
quantities are defined as the ensemble average of their
croscopic correspondences. This definition connects the
croscopic and macroscopic worlds.

To study how a system approaches its equilibrium s
one also uses probability description, where the evolution
the system is treated as a stochastic process. One fam
model for simulating such a process was proposed by Eh
fest one century ago@2#, which is anN-ball, 2-urn problem.
In the beginning,N numbered balls are distributed arbitrari
in either urnA or urnB. At each time step one ball is picke
out at random and then put into the other urn. This sim
model can be exactly solved to give an explicit Poinc´
1063-651X/2003/67~3!/031101~9!/$20.00 67 0311
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cycle. This model was then generalized by several author
mimic more complicated situations encountered in r
physical phenomena@3–5#. An attractive feature of these ur
model problems is that they are easy to formulate, but
always easy to solve. The solutions obtained have, theref
sometimes led to new mathematical techniques and insi
@6–9#. Recently, some new urn models were proposed
solved analytically or numerically. Their results provide ve
good descriptions on granular and glass systems@10–14#.

In this paper, we obtain the exact solution of a generaliz
urn model. Hereafter, we call it as ‘‘periodic urn model.’’ I
this model, one considersN distinguishable balls that ar
distributed inM urns. TheseM urns are arranged along
circle and numbered one by one to form a cycle, that is,
define the (M11)th urn as the first urn~See Fig. 1!. To
begin with, the initial distribution of theN balls in theM urns
is given byum1,0,m2,0, . . . ,mM ,0&[um0&, wheremi ,0 is the
number of balls in thei th urn at the start. At each time ste
one ball is picked out of theN balls such that every ball ha
an equal probability of being picked up. The ball is th

FIG. 1. Arrangement of the numbered urns and balls in
periodic urn model. The gray disks represent the urns and the w
disks represent the balls. Here we illustrate a configuration fo
system with six urns and seven balls. The state vector for this c
figuration isum&5u2,1,0,2,1,1&.
©2003 The American Physical Society01-1
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placed into the next numbered urn. The state that thei th urn
contains mi balls is represented byum1 ,m2 , . . . ,mM&
[um&, which we name it asstate vector. Hereafter we call a
distribution stringm ~without knowing the numbering of the
balls! a configurationof the system. Otherwise, if we als
know the location of each numbered ball, we call such
distribution amicrostateof the system.

After s steps, the transition probability from stateum0& to
stateum& can be written aŝmuPsum0&, whereP represents
the operation in one step. The set of state vectors is take
be orthonormal.

According to the above description, the transition pro
abilities corresponding to thesth step and the (s21)th step
satisfy the recursion relation

^m1 ,m2 , . . . ,mMuPsum0&

5(
i 51

M
mi11

N
^ . . . ,mi11,mi 1121, . . .uPs21um0&, ~1!

wheremM115m1 as has been mentioned before. In additio
any state that does not satisfy the constraint

m11m21•••1mM5N ~2!

is an unphysical state and has null contribution in the su
Hereafter, we will use Eq.~1! as the basis to derive all th
results we want to know.

This paper is organized as follows. In the following se
tion we calculate the average number of balls in an urn at
time. In Sec. III we introduce a generating function that h
N variables and solve the problem completely. In Sec. IV
solution of the model will be applied to the calculation of t
Poincare´ cycle. Finally in Sec. V we give the summary o
this paper.

II. AVERAGE NUMBER OF BALLS IN AN URN

The first thing we want to know is how many balls o
average will appear in thei th urn after firsts steps. We study
the problem in the following four subsections.

A. Exact solution

We define the average~the expectation value! of a quan-
tity A @which depends on the state vectorum& at each step,
written asA(m)] after s steps as

^A&s5(
$m%

A~m!^muPsum0&, ~3!

where$m% include all the configurations satisfying constra
~2!.

Let A(m)5mi , then from Eqs.~1! and ~3! we have
03110
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^mi&s5(
$m%

mi^muPsum0&

5(
$m%

(
j 51

M
mi~mj11!

N

3^ . . . ,mj11,mj 1121, . . .uPs21um0&

5(
j 51

M S ^mimj&s21

N
2

^mj&s21

N
d j ,i1

^mj&s21

N
d j 11,i D

5(
j 51

M
^mimj&s21

N
2

^mi&s21

N
1

^mi 21&s21

N

5S 12
1

ND ^mi&s211
^mi 21&s21

N
, ~4!

here we have used constraint~2!.
Now we are ready to solvêmi&s . Recurrence relation~4!

can be written as

Ms5PaveMs21 , ~5!

whereMs is a M31 column vector defined by

Ms5F ^m1&s

^m2&s

A

^mM&s

G , ~6!

andPave is a M3M matrix written as

Pave53
12

1

N
0 •••

1

N

1

N
12

1

N
••• 0

A A � A

0 0 ••• 12
1

N

4 . ~7!

By means of recurrence relation~5!, Ms can be deduced

Ms5Pave
s M0 , ~8!

where

M05F m1,0

m2,0

A

mM ,0

G ~9!

represents the initial state.Pave
s can be calculated if one

knows the eigenvalueslm and eigenvectorsQm of Pave .
They are given by~see Fig. 2!
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lm512
1

N
1

1

N
qm* , Qm5

1

AM F qm

qm
2

A

qm
M

G , ~10!

where

qm5expS 2mp i

M D , m51,2, . . . ,M . ~11!

DenoteR as theM3M matrix of the eigenvectorsQm ,

R5@Q1 ,Q2 , . . . ,QM#

5
1

AM F q1 q2 ••• qM

q1
2 q2

2
••• qM

2

A A � A

q1
M q2

M
••• qM

M

G ~12!

andL as the diagonal matrix ofPave’s eigenvalueslm ,

L5F l1 0 ••• 0

0 l2 ••• 0

A A � A

0 0 ••• lM

G , ~13!

then we obtain

Pave
s 5RLsR215RLsR†5RLsR* , ~14!

FIG. 2. Eigenvalues$lm% of the matrixPave ~represented by the
tiny circles!. HereR51 andr 51/N are the radii of two reference
circles, andOA and OB are their centers, respectively. The eige
values of Pave are distributed uniformly on the small referenc
circle centered atOB5(121/N,0).
03110
where we have used the following properties ofR,

R5Rt, ~R21!5R†5~R!* , Rmn5qn
m5q1

mn . ~15!

Now the average number of balls in thei th urn afters
steps can be determined,

^mi&s5
1

M (
j 51

M

(
k51

M

(
l 51

M

qj
i l j

sd jkql
2k^ml&0 ,

5
1

M (
j 51

M

(
l 51

M

q1
j ( i 2 l )l j

sml ,0 , ~16!

where ^ml&05ml ,0 is the initial number of balls in thel th
urn.

B. Numerical results

Let us now consider a simple example. Suppose initia
all the N balls are in the first urn, that is,

m1,05N, m2,05m3,05•••5mM ,050, ~17!

then according to Eq.~16!, we have

^m1&s5
N

M (
j 51

M

l j
s . ~18!

Figure 3 shows the results forN550 at M52,5,10,25.
TheM52 case is the original Ehrenfest model, in which t
average number of balls in the first urn decays toN/2 in a
period of steps of orderN. For anyM.2 case, however, we
observe that before the system arrives its true equilibri
~here we mean the value of^mi&s for eachi does not change
anymore!, ^m1&s undergoes several oscillations, which see
to be a unique feature of this model and have never b

FIG. 3. Average number of balls in the first urn^m1&s as a
function of times, assuming initially all the balls are in the first urn
Here we plot ‘ ‘fraction’’5^m1&s /N for N550 at M52,5,10,25.
As one can see, except for theM52 case~which is the original
Ehrenfest urn model!, this mean value oscillates several times b
fore it reaches a stationary value.
1-3
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found in other kinds of urn models—to our knowledge. F
thermore, in Fig. 3 theM525 case shows that before th
appearance of the first peak of^m1&s , there is a period dur-
ing which ^m1&s is almost zero. This phenomenon togeth
with the oscillations mentioned before seem to be typi
results when bothM andN are large.

Some results for largeM and largeN are shown in Figs. 4
and 5. In Fig. 4 we plot thêm1&s /N curves for M530
~which is large enough in practice! and N55,15,30,60. As
one can see, except for theN55 case, thêm1&s /N curves
corresponding to differentN’s merge and become one un
versal function ofs/N. To understand this let us note that
the largeN limit Eq. ~18! can be approximated by

^m1&s5
N

M (
j 51

M

expFs~qj
2121!

N G , ~19!

FIG. 4. Plot of fraction5^m1&s /N as a function of times/N,
assuming initially all the balls are in the first urn. HereM530 and
N55,15,30,60. Except for theN55 case~this N is too small!, all
the curves merge and become one. The visible range of fraction
been tuned to give a better illustration.

FIG. 5. Plot of fraction5^m1&s /N as a function of times/N,
assuming initially all the balls are in the first urn. HereN560 and
M530,60,90. The first peaks of these three curves are locate
s/N530,60,90, respectively.
03110
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and hencêm1&s /N becomes a universal function ofs/N for
a fixed M. Figure 5 shows the results forN560 and M
530,60,90. The local maxima of these^m1&s /N curves are
located atM, 2M , 3M , . . . , etc. We will explain this result
in the following subsection by using an approximation of E
~19!.

C. Two approximations

Starting from Eq.~19!, we now derive two useful approxi
mations of^m1&s /N, which can help us understand the o
servations in Figs. 4 and 5. First, define

t[
s

N
, ~20!

and expand the exponential functions in Eq.~19! as power
series oft, we have

^m1&s

N
5

e2t

M (
j 51

M S 11tqj
211

1

2
t2qj

221••• D
5e2tF11

tM

M !
1

t2M

~2M !!
1•••G . ~21!

In deriving Eq.~21!, we have used the fact that

(
j 51

M

qj
2k5(

j 51

M

q1
2 jk5H 0 if k/MÞ integer

M if k/M5 integer.
~22!

Note that the form of thej th term (j .0) appearing in the
last line of Eq.~21! is the same as the probability ofn suc-
cessful trials in aPoisson process@15#:

P~n!5
e2ttn

n!
. ~23!

Heren5 jM , andt5^n& is the expectation value ofn. This
is not an accident and can be easily understood. The qua
^m1&s /N represents not only the average number of balls
the first urn divided byN, but also the probability of finding
a certain ball, say, ball 1, in the first urn. For example,
^m1&s5N, then the probability of finding ball 1 in the firs
urn is 1. At each time step, ball 1 has the probability ofp
51/N being picked out and moved to the next urn. No
sinceN is large,p is small. In this limit if we do the same
operations times ~here we assumes is also large and define
t5ps5s/N), then the probability for ball 1 to be movedn
steps forward from the first urn is given by Eq.~23!. Further-
more, since our system has a circulating property, the pr
ability of finding ball 1 in the first urn afters steps consists o
the following possibilities:~i! ball 1 has never been selecte
@the corresponding probability is (12p)s'e2ps5e2t], and
~ii ! it has been picked upM times, and~iii ! it has been
chosen 2M times, and so on. The summation of all the
contributions gives us the expression of the last line of E
~21!.

Applying the saddle-point methodand theStirling for-
mula @15# to eache2tt jM /( jM )! term, we have

as

at
1-4
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e2tt jM

~ jM !!
'

S jM

e D jM

e2(t2 jM )2/2jM

A2p jM S jM

e D jM 5
e2(t2 jM )2/2jM

A2p jM
,

~24!

and thus

^m1&s

N
'e2t1

e2(t2M )2/2M

A2pM
1

e2(t22M )2/4M

A4pM
1•••.

~25!

Equation~25! shows that~1! the ^m1&s /N curve consists
of an exponentially decaying terme2t and a series of Gauss
ian terms of different heights. They give a good qualitat
description of the results observed in Figs. 4 and 5.~2! The
center of mass of theseN balls circulate through theM urns
with a periodDs5NM, consistent with the definition of the
model.~3! As time goes by, the distribution of theseN balls
becomes broader and broader, implying a diffusion effect.~4!
The ‘‘time difference’’ between two successive maxima
Dt5M , whereas the standard deviation of thej th Gaussian
term is AjM , thus if j !M , we haveAjM !Dt, and the
overlap between two successive Gaussian terms can be
glected.

If t!M2, then in the above expression we have to
clude the terms only up to the orderj max't/M!M, and thus
Eq. ~25! gives not only a qualitative but also a good quan
tative description of thêm1&s /N curve.

Whent becomes too large that the overlap between t
successive Gaussian terms cannot be neglected, then Eq~25!
becomes useless. However, we can show that ift becomes
larger thanM2/2p2, then another accurate approximatio
can be obtained. Note that Eq.~19! can be rewritten as

^m1&s

N
5

1

M
@112e2t(12cosu1)cos~t sinu1!

12e2t(12cosu2)cos~t sinu2!1•••#, ~26!

where we have defined

u j5
2p j

M
5 j u, u5

2p

M
. ~27!

Remember thatM is a large number, so

sinu1'u, 12cosu1'
u2

2
. ~28!

Thus fort@M2/2p2 @i.e., t(12cosu1)'tu2/2@1] we have
the approximation

^m1&s

N
'

112e2tu2/2cos~tu!

M
. ~29!
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D. Center of mass—the global consideration

Up to now we have been focusing our attention on o
one single urn. Now we show that we can also underst
the behaviors of the system in a global manner. First, de
the ‘‘phase angle’’ of thekth urn ~see Fig. 1! as

fk52~k21!u. ~30!

Also, we define the ‘‘center of mass’’~COM! of our N-ball,
M-urn system as

xCOM[

(
k51

M

eifk^mk&s

(
k51

M

^mk&s

5 (
k51

M

eifk
^mk&s

N
. ~31!

According to Eq.~31! xCOM is in general a complex num
ber, say,z5reif. Herer 5uzu satisfies 0<r<1, andf is the
phase angle ofz. Variation off with respect tot5s/N rep-
resents how fast on average theseN balls circulate through
the M urns, and the normr gives us the information of the
distribution of theN balls. For example, if every urn ha
N/M balls, thenr 50. Substitute Eqs.~18! and~30! into Eq.
~31! and use Eqs.~10! and ~11!, we get

xCOM5
1

M (
j 51

M

(
k51

M

q1
( j 21)(k21)l j

s

5l1
s

'e2tu2/2e2 i tu, ~32!

hence

r 5e2tu2/2, f52tu. ~33!

Here we see that the COM curve is approximately descri
by a spiral circulating inside a unit circle. The angular fr
quency of this circulating motion with respect tot5s/N is
2u522p/M ~clockwise!, consistent with both the defini
tion of our model and the oscillation behaviors of th
^m1&s /N curve discussed before. Furthermore, whent
.M2/2p2, we haver ,e21, which indicates that now thes
N balls are distributed in a wide extent, also consistent w
the result of the second approximation in the last subsect
Some examples are illustrated in Figs. 6 and 7.

III. STATE MATRIX AND GENERATING FUNCTION

Now we calculatê muPsum0&—the transition probability
from um0& to um& after s steps. Once one knows the exa
solution of ^muPsum0&, any quantity can be calculated ex
plicitly.

Define

Smm85^muPum8&, ~34!

then we have
1-5
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^muPsum0&5~Ss!mm0
. ~35!

HereS is aHN
M3HN

M matrix, we name it asstate matrix, and
um& is a HN

M column vector, here

HN
M5CM21

N1M215
~N1M21!!

N! ~M21!!
. ~36!

Like before,Ss can be calculated by means of its eigenvalu
and eigenstates. According to Eq.~1!, the matrixS has com-
ponents

Smm85(
i 51

M
mi11

N

3dm1 ,m
18
dm2 ,m

28
•••dmi11,m

i8
dmi 1121,m

i 118 •••dmM ,m
M8

,

~37!

FIG. 6. Plot of the trace of the center of mass~COM! as a
function of time steps, assuming initially all the balls are in the firs
urn. Here the curves are plotted fors50 to s52MN with M
52,5,15,60. Each curve with large enoughM (M>10) has circu-
lated the origin~the ‘‘x’’ symbol! of the complex plane twice afte
evolving 2MN steps.

FIG. 7. These COM curves are plotted fors50 to s
5M2N/p2 with M52,5,15,60. The norm of a COM in the com
plex plane becomese2250.1353 times smaller after evolvin
M2N/p2 steps ifM is large enough (M>10). Here the symbol ‘‘x’’
denotes the origin.
03110
s

wheremM115m1 have been assumed. The eigenvalue eq
tion can be written as

(
$m8%

Smm8fm85gfm , ~38!

or more explicitly

(
i 51

M
mi11

N
fm1 ,m2 , . . . ,mi11,mi 1121, . . . ,mM

5gfm1 ,m2 , . . . ,mi ,mi 11 , . . . ,mM
. ~39!

As in Eq. ~1!, fm50 for any unphysicalm @an m that does
not satisfy Eq.~2!#.

It is not an easy task to diagonalizeS directly. Thus we
adopt another strategy. We first construct a generating fu
tion for fm1 ,m2 , . . . ,mM

and then transform the matrix eigen
value equation~38! to its differential equation form. We find
that the differential equation can be solved analytically.

By introducing variablesx1 ,x2 , . . . ,xM , the generating
function can be defined as

f ~x1 ,x2 , . . . ,xM ![(
$m%

fm1 ,m2 , . . . ,mM
x1

m1x2
m2
•••xM

mM .

~40!

Hereafter, we also use the following expression:

f ~X!5(
$m%

fmXm, ~41!

whereX andXm are defined by

X[F x1

x2

A

xM

G , Xm[x1
m1x2

m2
•••xM

mM . ~42!

To proceed further, note thatf (X) satisfies the following
two relations:

]xi
f ~X!5(

$m‰

~mi11!fm1 ,m2 , . . . ,mi11, . . . ,mM
Xm,

xi f ~X!5(
$m‰

fm1 ,m2 , . . . ,mi21, . . . ,mM
Xm, ~43!

as can be easily checked. MultiplyingXm on both sides of
Eq. ~39!, summing over all$m%, and using the results of Eq
~43!, we get

(
i 51

M
xi 11

N
]xi

f ~X!5g f ~X!, ~44!

or equivalently
1-6
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(
i 51

M

xi 11]xi
ln@ f ~X!#5Ng, ~45!

which is the desired differential equation form of eigenva
equation~39!. Define

xqj
5x1qj1x2qj

21•••1xMqj
M , ~46!

we find

(
i 51

M

xi 11]xi
ln~xqj

!5qj
215qj* . ~47!

This implies that the complete solution of ln@f(X)# can be
written as

ln@ f n~X!#5(
j 51

M

nj ln~xqj
!, ~48!

which gives us

f n~X!5)
j 51

M

xqj

nj[Xq
n . ~49!

Here f n(X)~a homogeneousNth power function! and the ei-
genvaluegn are characterized byn5@n1 ,n2 , . . . ,nM# and
q5@q1 ,q2 , . . . ,qM#, satisfying

N5(
j 51

M

nj , gn5
1

N (
j 51

M

njqj* 5
n•q*

N
. ~50!

Denoting thenth eigenvector ofSasf(n), Eqs.~38! and
~41! now become

(
$m8%

Smm8fm8~n!5gnfm~n! ~51!

and

f n~X!5(
$m%

fm~n!Xm5Xq
n . ~52!

To diagonalizeSwe first define an orthogonal transform
tion matrix U,

Umn5fm~n!, ~53!

wherefm(n) according to Eq.~52! is the coefficient ofXm

that appears in the expansion off n(X)5Xq
n .

We now are ready to solve the matrixU21. Multiplying
Xm5x1

m1x2
m2
•••xM

mM on both sides of

(
$n%

fm~n!Unl
215(

$n%
UmnUnl

215dml ~54!

and summing over all possible$m%, we get

(
$n%

f n~X!Unm
215(

$n%
Xq

nUnm
215Xm. ~55!
03110
Furthermore, define two vectorsY andXq as

Y5F y1

y2

A

yM

G[F q1 q2 ••• qm

q1
2 q2

2
••• qm

2

A A � A

q1
M q2

M
••• qm

M

GF x1

x2

A

xM

G , ~56!

and

Xq[F xq1

xq2

A

xqM

G , ~57!

we have

Y5AMRX. ~58!

Using the same notation and remember thatR215R* , we
find

X5
1

AM
R* Y5

1

M
Yq* . ~59!

These results further lead to

Xm5
1

MN
~Yq* !m5

1

MN
Yq

m̃5
1

MN
f m̃~Y!,

5
1

MN (
$n%

fn~m̃!Yn5
1

MN (
$n%

fn~m̃!Xq
n

5
1

MN (
$n%

f n~X!fn~m̃!. ~60!

Comparing Eq.~60! with Eq. ~55!, we get

Unm
215

1

MN
fn~m̃!, ~61!

where we have used the relations:

Yq*
m

5y
q

1*
m1y

q
2*

m2y
q

3*
m3
•••y

q
M21*

mM21y
q

M*
mM

5yqM21

m1 yqM22

m2 yqM23

m3
•••yq1

mM21yqM

mM

5yq1

mM21yq2

mM22yq3

mM23
•••yqM21

m1 yqM

mM

5Yq
m̃5 f m̃~Y!, ~62!

and definedm̃ as

m̃[@mM21 ,mM22 ,mM23 , . . . ,m1 ,mM#. ~63!

Finally we obtain the desired solution of^muPsum0&,
1-7
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^muPsum0&5~Ss!mm0
,

5~UGsU21!mm0
,

5
1

MN (
m8

gm8
s fm~m8!fm8~m̃0!, ~64!

where G is the eigenvalue matrix ofS, which has compo-
nentsGmm85gmdmm8 .

IV. THE POINCARÉ CYCLE

In this section, we study the Poincare´ cycle of our peri-
odic urn model. For simplicity we first consider the situati
that initially all theN balls are stayed in the last urn, i.e.,

m05@0,0,0, . . . ,N#.

From Eqs.~65! and ~63! we have

m05m̃0 . ~65!

Now we want to know how many time steps on avera
are required for all of theN balls to return to the last urn~the
initial state!. We thus have to calculate

^m0uPsum0&5
1

MN (
m

gm
s fm0

~m!fm~m̃0!. ~66!

Recall thatfm(n) is nothing but the coefficient ofXm

5x1
m1
•••xM

mM appearing in the expansion off n(X)5Xq
n

5xq1

n1
•••xqM

nM . From Eqs.~52! and ~65!, we have

fm0
~m!51, ~67!

fm~m̃0!5
N!

m1!m2!m3! •••mM!
[S N

mD , ~68!

and hence

^m0uPsum0&5
1

MN (
m

S N

mD gm
s [P~s!. ~69!

HereP(s) represents the transition probability for the syste
to return to the initial state afters steps. It does not preclud
the possibility that the initial state has already been rearri
before.

Since the Poincare´ cycle is defined as the time interva
required for the event of first return to happen, so we hav
do more calculations to extract what we really want. W
define a functionQ(s) as the probability for the event of firs
return to happen at thesth step. The Poincare´ cycle can thus
be defined as

P5(
s50

`

sQ~s!. ~70!

By definition Q(s) relates toP(s) via the relation
03110
e

d

to

P~s!5Q~s!1 (
k51

s21

Q~k!P~s2k!, ~71!

and henceQ(s) can be calculated fromP(s). To ease the
calculation we now use again the generating funct
method. We first define two generating functions:

h~z![(
s51

`

P~s!zs, g~z![(
s51

`

Q~s!zs, ~72!

and then we find from Eq.~71! that

g~z!5
h~z!

h~z!11
. ~73!

These two generating functions also lead to

(
s50

`

sQ~s!5S dg

dzD
z51

, g85
h8

~11h!2
, ~74!

which can determine the Poincare´ cycle.
We now calculateh(z). From Eqs.~69! and ~82! we ob-

tain

h~z!5
1

MN (
m

S N

mD (
s51

`

~gmz!s,

5
1

MN (
m

S N

mD S gmz

12gmzD . ~75!

Since we know from Eq.~50! that gm0
51, thus whenz

→12, h(z) becomes singular,

lim
z→12

h~z!5
1

MN

z

12z
1regular function. ~76!

In this limit, we obtain

lim
z→12

g85 lim
z→12

h8

~11h!2
5MN, ~77!

which gives us the desired Poincare´ cycle P:

P5(
s50

`

sQ~s!5MN. ~78!

To understand the meaning of this result, we refer to
ergodic theorem@1#, which says that if one waits for a suf
ficiently long time, the locus of the representative point o
system will cover the entire accessible phase space. For
periodic urn model, the ‘‘representative point’’ correspon
to the microstate of the arrangement of balls, the ‘‘access
phase space’’ is the set of totalMN microstates, and the ‘‘lo-
cus’’ means the evolution history of the system~see Fig. 1!.
The result that the Poincare´ cycle equals the total number o
microstates of the system is a strong indication that the f
1-8
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damental assumption of statistical mechanics~equal prob-
ability of occurrence for each microstate! holds in this sys-
tem.

What will be the Poincare´ cycle if initially theseN balls
are not in a single urn? Let us denote the initial state byd,

ud&5ud1 ,d2 , . . . ,dM&. ~79!

Now we have

P~s!5^duPsud&5
1

MN (
$m‰

gm
s fd~m!fm~ d̃! ~80!

and

h~z!5
1

MN (
$m%

fd~m!fm~ d̃!S lmz

12lmzD . ~81!

In general, it is difficult to calculatefd(m) and fm(d̃).
However, we do not need to calculate them all. Remem
that to determine the Poincare´ cycle the knowledge of the
asymptotic form ofh(z) nearz51 is enough. This is given
by

lim
z→12

h~z!5
fd~m0!fm0

~ d̃!

MN

z

12z
1regular function.

~82!

Substituting

fd~m0!5S N

d D , fm0
~ d̃!51 ~83!

into ~82!, we find

P5 lim
z→12

h8

~11h!2
5

MN

S N

d D . ~84!
03110
er

This result can be easily understood by considering the d
nitions ofconfigurationandmicrostate~See Sec. I!. There is
only one microstate that corresponds toum0&, whereas there
are

S N

d D 5
N!

d1!d2! •••dM!
~85!

microstates that correspond toud&. Thus, on average the firs
return time for ud&→ud& becomes (d

N)21 times of that of
um0&→um0&. Here we find conclusive evidence that the fu
damental assumption of statistical mechanics on equal p
ability of occurrence for each microstate holds in this s
tem.

V. SUMMARY

In this work we propose a generalized Ehrenfest u
model of many urns arranged periodically along a circle.
solve anN-ball, M-urn problem explicitly. The evolution of
the system is studied, and the average number of balls
certain urn at any time step is calculated. We find that t
mean value oscillates several times before it arrives the
tionary value. We also obtained the Poincare´ cycle for two
situations. The results indicate that the fundamental assu
tion of statistical mechanics holds in this system.
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@5# J. Güémez, S. Velasco, and A. Calvo Herna´ndez, Am. J. Phys.

57, 828 ~1989!.
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